Multiplicity and the Lojasiewicz exponent

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Lojasiewicz Exponent of the Gradient of a Polynomial Function

Let h = ∑ hαβX Y β be a polynomial with complex coefficients. The Lojasiewicz exponent of the gradient of h at infinity is the upper bound of the set of all real λ such that |gradh(x, y)| ≥ c|(x, y)| in a neighbourhood of infinity in C, for c > 0. We estimate this quantity in terms of the Newton diagram of h. The equality is obtained in the nondegenerate case.

متن کامل

Quadratic Optimization with Orthogonality Constraints: Explicit Lojasiewicz Exponent and Linear Convergence of Line-Search Methods

A fundamental class of matrix optimization problems that arise in many areas of science and engineering is that of quadratic optimization with orthogonality constraints. Such problems can be solved using line-search methods on the Stiefel manifold, which are known to converge globally under mild conditions. To determine the convergence rate of these methods, we give an explicit estimate of the ...

متن کامل

Multiplicity Results for Equations with Subcritical Hardy-sobolev Exponent and Singularities on a Half-space

We prove some multiplicity results for a class of singular quasilinear elliptic problems involving the critical Hardy-Sobolev exponent and singularities on a half-space.

متن کامل

Characterizations of Lojasiewicz inequalities and applications

The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative charact...

متن کامل

An Effective Lojasiewicz Inequality for Real Polynomials

Example 1. Set f1 = x d 1 and fi = xi−1 − x d i for i = 2, . . . , n. Then Φ(x) := maxi{|fi(x)|} > 0 for x 6= 0. Let p(t) = (t d , t n−2 , . . . , t). Then limt→0 ||p(t)||/|t| = 1 and Φ(p(t)) = t d . Thus the Lojasiewicz exponent is ≥ d. (In fact it equals d.) This works both over R and C. In the real case set F = ∑ f 2 i . Then degF = 2d, F has an isolated real zero at the origin and the Lojas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Center Publications

سال: 1988

ISSN: 0137-6934,1730-6299

DOI: 10.4064/-20-1-353-364